On Singular Moduli for Arbitrary Discriminants

نویسندگان

  • KRISTIN LAUTER
  • BIANCA VIRAY
چکیده

Let d1 and d2 be discriminants of distinct quadratic imaginary orders and let J(d1, d2) denote the product of differences of CM j-invariants with discriminants d1 and d2. In 1985, Gross and Zagier gave an elegant formula for the factorization of the integer J(d1, d2) in the case that d1 and d2 are relatively prime and discriminants of maximal orders. We generalize their methods and give a complete factorization in the case that d1 is squarefree and d2 is the discriminant of any quadratic imaginary order. We also give a partial factorization in all other cases, and give a conjectural formula when the conductors of d1 and d2 are relatively prime.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the singular values of Weber modular functions

The minimal polynomials of the singular values of the classical Weber modular functions give far simpler defining polynomials for the class fields of imaginary quadratic fields than the minimal polynomials of singular moduli of level 1. We describe computations of these polynomials and give conjectural formulas describing the prime decomposition of their resultants and discriminants, extending ...

متن کامل

Singular Moduli of Shimura Curves

The j-function acts as a parametrization of the classical modular curve. Its values at complex multiplication (CM) points are called singular moduli and are algebraic integers. A Shimura curve is a generalization of the modular curve and, if the Shimura curve has genus 0, a rational parameterizing function exists and when evaluated at a CM point is again algebraic over Q. This paper shows that ...

متن کامل

Singular Moduli Refined

In this paper, we give a refinement of the work of Gross and Zagier on singular moduli. Let K1 and K2 be two imaginary quadratic fields with relatively prime discriminants d1 and d2, and let F = Q( √ d1d2). Hecke constructed a Hilbert modular Eisenstein series over F of weight 1 whose functional equation forces it to vanish at s = 0. For CM elliptic curves E1 and E2 with complex multiplication ...

متن کامل

Some Congruences for Traces of Singular Moduli

We address a question posed by Ono [7, Problem 7.30], prove a general result for powers of an arbitrary prime, and provide an explanation for the appearance of higher congruence moduli for certain small primes. One of our results overlaps but does not coincide with a recent result of Jenkins [6]. This result essentially coincides with a recent result of Edixhoven [3], and we hope that the compa...

متن کامل

Gross-zagier on Singular Moduli: the Analytic Proof

The famous results of Gross and Zagier compare the heights of Heegner points on modular curves with special values of the derivatives of related L-functions. When specialized to the level 1 case (i.e., the full modular curve H/Γ, where Γ = SL2(Z)), we recover an astounding formula for the differences of singular moduli (the Heegner points on the full modular curve) in terms of an explicit prime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013